Journal of Computational Physics 228 (2009) 3173-3181

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Short Note

Shape and topology optimization for electrothermomechanical
microactuators using level set methods

Zhen Luo?, Liyong Tong **, Haitao Ma®

2School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
bState Key Laboratory of Subtropical Building Science, Department of Civil Engineering, South China University of Technology, Guangzhou 510641, China

ARTICLE INFO ABSTRACT
Artic{e history: In this short note, a shape and topology optimization method is presented for multiphysics
Received 11 July 2008 actuators including geometrically nonlinear modeling based on an implicit free boundary

Received in revised form 1 October 2008
Accepted 5 January 2009
Available online 22 January 2009

parameterization method. A level set model is established to describe structural design
boundary by embedding it into the zero level set of a higher-dimensional level set function.
The compactly supported radial basis functions (CSRBF) are introduced to parameterize the
implicit level set surface with a high level of accuracy and smoothness. The original more
difficult shape and topology optimization driven by the Hamilton-Jacobi partial differential
equation (PDE) is transferred into a relatively easier parametric (size) optimization, to
which many well-founded optimization algorithms can be applied. Thus the structural
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Multiphysics actuators optimization is transformed to a numerical process that describes the design as a sequence
Compliant mechanisms of motions of the design boundaries by updating the expansion coefficients of the size opti-
Radial basis functions mization. Two widely studied examples are chosen to demonstrate the effectiveness of the

proposed method.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

This short note addresses a parameterization level set method for structural shape and topology optimization of compli-
ant actuators involving multiphysics and geometrical nonlinearity. A variety of methods have been developed for topology
optimization such as the homogenization method [5], solid isotropic material with penalization (SIMP) approach [31,6] and
evolutionary structural optimization (ESO) [28]. Recently, a new family of methods has emerged for shape and topology opti-
mization problems based on the level set method which was presented by Osher and Sethian [16]. Sethian and Wiegmann
[22] are among the first few researchers who introduced the standard level set method [16] into shape and topology opti-
mization on a fixed Eulerian grid. This method is further developed by a number of researchers [17,1,26]. The main feature of
these methods is to describe the front implicitly as the zero level set of a higher-dimensional scalar function, and then a
velocity field is incorporated to advance the front propagation by directly solving the Hamilton-Jacobi PDE with explicit
schemes. However, it should be pointed out that numerical difficulties related to the CFL (Courant-Friedrichs-Lewy) condi-
tion, velocity extension scheme and reinitialization procedure limit the application of the level set method to shape and
topology optimization problems, because complicated PDE solving procedures are often involved in these numerical proce-
dures [18,22]. In particular, the final design depends on the initial guess because no nucleating mechanism is included to
create new holes inside the design domain [10]. To overcome these numerical difficulties, several parameterization or equiv-
alent level set methods have been proposed without solving the Hamilton—-Jacobi PDEs via explicit schemes [4,11,13-15].
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The possible applications of topology optimization methods are numerous but an attractive one is the systematic design
of actuators in MEMS [2]. As far as the multiphysics actuator is concerned, electrostatics, electromagnetic, electrothermo-
elastic, piezoelectric and photostrictive principles can be applied as actuation authorities to drive mechanical components
to complete specified performance. In this work, the electrothermoelastic action induced by non-uniform Joule heating is
considered as the actuation disciplinary. Such multiphysics actuators with embedded actuation have been widely studied
recently due to many of its advantages [23,29,30], such as a relatively large displacement with low voltage, good controlla-
bility, easy microfabrication and amenability to any practical conducting materials. Multiphysics actuators can be regarded
as a sort of electro-thermally actuated compliant mechanisms [12,23] in which fewer parts, fewer assembly processes and no
lubrication are required. A promising method for the design of compliant mechanisms is to apply topology optimization
methods [7] to generate compliant mechanisms with distributed compliance [13,23,29]. This method is especially suitable
for producing compliant micro-devices in MEMS, because the difficulties associated with fabrication and assembly can be
avoided.

Luo et al. [13] has presented a parametric level set method for shape and topology optimization problems using CSRBFs
[20,27]. This short note naturally extends the parameterization level set method [13] to more advanced shape and topology
optimization problems involving multiphysics modeling and geometrically nonlinear analysis.

2. Level set based parameterization scheme

The level set model is mathematically described as a Hamilton-Jacobi equation [16,21]

0P(X,t)
ot

- vn|v(p| =0, @(X, 0) = QO(X)v (l)

where &(x,t) is a Lipschitz continuous scalar function and ¢ is the pseudo-time to enable the dynamic process of the level set
surface, and v, is the normal velocity field. Hence the movement of the boundary is just a question of transporting the level
set function along the normal direction according to a series of solutions from the Hamilton-Jacobi PDE. In general, an ana-
lytical level set function is unknown and so in standard level set methods [16,21] an explicit time-marching scheme is indis-
pensable to enable the discrete level set processing.

RBFs have experienced considerable developments due to their favorable interpolation behaviors in multivariate approx-
imations [9]. Centrally positioning the RBF functions at pre-specified knots in the design domain, the original level set func-
tion can be described as

(X, 1) = p(X) a(t) =Y §;(X)0(t), ()

-

Il
—_

where the vectors

o(X) = [$1(X), $2(X), ..., py(X)]" € R" (3)
consists of C° continuity shape functions [27] and the expansion coefficients are given by
a(t) = [0 (), oa(t), ..., o (£)]" € RN, (4)

In doing so, the interpolation of the level set function can be uniquely determined in terms of the given data at RBF knots. If
these knots are properly distributed in the design domain, they can interpolate the level set function with desired smooth-
ness and completeness, and the continuity of the interpolant can be guaranteed via the continuity of both the shape func-
tions and their partial derivatives. The present interpolation scheme is based on the assumption that all the knots are fixed in
the design domain, leading to a separation of the space and time of the original Hamilton-Jacobi PDE (shape functions are
spatial while the coefficients are temporal). It is noted that the compact support should be appropriately selected to ensure
both the nonsingularity of the interpolation and the computational efficiency [9,27]. This study suggests a support radius
that is selected as 2-4 times of the element length according to numerical experience.
The level set model in Eq. (1) is therefore re-written as

@(X)"a(t) — v, |(Vep) a(t)| = 0. (5)

According to Eq. (5), we can get the following normal velocity field:

e o da(t)
vn_\(V(p)Ta(t)|a(t)7 where a(t) = T (6)

It should be noted that Eq. (5) implies a natural extension of v, to all knots over the entire design domain rather than only the
points on the boundary. However, this study only works out the expression of v, but does not need to explicitly calculate it as
[1,26].
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3. Design optimization of multiphysics actuators

In this section, the electrothermomechanically loaded 2D structures involve in sequentially solving a set of weakly cou-
pled boundary value problems that span the electrical, thermal and elastic domains. The electric and thermal equations are
treated as linear but the elastic system is considered to be geometrically nonlinear. It is assumed that no internal electric
current is applied but the electrical equation has non-zero boundary condition, and no body forces and boundary tractions
are applied in the structure of elastic system.

The optimization objective for the geometrically nonlinear problem is to maximize the output displacement in a specified
direction [8,19,14]. The shape and topology optimization for multiphysics compliant actuators is defined as

Minimize : J(u, @) = —ugy,
G(®) = [, H(®)dQ - V' <0,
Ojmin < 0 < 04 max,

Subject to : a(V,8V,®) =1L (6V,®) V¥éV eV, V=Vand sV =0on I},
ay(T, 8T, ®) = L,(V, 8T, ®) V6T €T, T=T and 6T =0 on I'5,
as(u,ou, @) = I5(T,ou, ®) VéoueU, u=uand su=0on I3,

where the subscripts 1, 2 and 3 are used to indicate electrical, thermal and elastic problems, respectively. V (Ve V), T
(TeT) and U (u € U) are used to represent vectors of the voltage, temperature and displacement, respectively. 5V, 6T
and Ju represent the variation terms corresponding to V, T and u, and V,T and @ are the voltage, temperature and dis-
placement specified on the related boundaries. V' is the prescribed volume to limit the allowable material usage in the
design domain. H(®) is the Heaviside function [26]. In practice, ojmin and o;max are a pair of regularized lower and upper
bounds.

The bilinear functionals with respect to the weak forms of the electrical, thermal and elastic equations are stated, respec-
tively, as

a;(V,oV, ®) :/Dcl(V, 5V)H(d>)dQ:/D.VTVKEV((SV)hH(@)dQ, (8)

a,(T,oT, ®) :/D.CZ(T, ST)H(®)dQ = /DVTTK[V((ST)hHUD)dQ, 9)

as(u,ou, @) :/Dc3(u, 5u)H(d>)dQ:/DS,-j(u)nU(u; ou)hH(®)dQ (10)
and the relevant loading functionals are expressed, respectively, as

LoV, ®) =0, 11)

L(V, 6T, ®) = /D (V'VK,VV)SThH($)dQ — /D 2yTSThH(®)dQ, (12)

L(T,ou, @) = As}(AT)Es((Su)hH((D)dQ. (13)

Here k., k; and E are electrical conductivity, thermal conductivity and elasticity matrices, respectively, and 7 is the convec-
tion coefficient of the surface. The thermal strain is defined as ¢(AT)=aAT{1 1 0}7, where « is thermal expansion coef-
ficient and AT=(T - T,,) is the temperature change (T, refers to the environment temperature). From Eqgs. (9)-(12), h
represents the thickness of finite elements.

S;j represents the second Piola-Kirchhoff stress tensor which is defined as follows:

S,-j(u) = E,-jkl.sk,(u) (14)

and ¢&; and #;; are the Green-Lagrange strain tensor and virtual strain tensor, respectively

o=} 22, e
o) = (Gt G T G G ). (16)
Thus the residual of the elastic problem is defined as the error of the following equation:
R, = /Dfp(T7 u, Su)H(P)dQ = /IJBijp(u)Eijkl[st(At)ék, — &u(u)|H(®)dQ, 17)

where § is Dirac delta function [26], and B is the structural strain matrix which includes one linear term and nonlinear term,
respectively. For more details on tangent stiffness matrix and Newton-Raphson iterative scheme, readers refer to [3].
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4. Design sensitivity analysis using shape derivative
The Lagrangian method is utilized to convert the original optimization problem into an unconstrained problem as
L=]J(u,®)+ 4 (/Q H(®)dQ — V*) + M[h(8V, @) —ay(V, 6V, @)| + 22[(V, 0T, @) — ax(T, 6T, ®)] + i3[l5(T, du, ®)

— a3 (u, su, )], (18)

where /4, /, and /3 are introduced as three Lagrange multipliers relevant to three different equations in the multiphysics
system, which can be dropped out further from the Lagrangian function by considering the linear relationship between load-
ing and energy bilinear functionals. A is the Lagrange multiplier of the volume constraint.

Here, the shape derivative of the Lagrangian function L is directly given as follows: For more details of deriving shape
derivative for a general function, the readers can refer to the related literature [1,24,26,13]

oL

a7t /v,,l//(S( IV o|de, (19)

where
V= {f(T, u, ou) + ¢ (V, 8V) + co(T, 8T) + c3 (1, 0u) + A + V'VK NV (8V)OT — 29T8T + Sij(u)n(u; ou) + 8I(T)E.9(5u)}.
(20)

It is noted that fis an equivalent term for the original objective function which can be obtained from the residual force in Eq.
(17). Recall the velocity v, defined in Eq. (6) and substitutes it into Eq. (19), the shape derivative of the Lagrangian is written
as

2 [ voas@jactde (21)

Let s = ¥ + A, then the shape derivative of the Lagrangian can be further re-written as

N

G- { [ vl +Az{ [iwetscanar}uo o)

i=1

On the other hand, the shape derivative of L is given as follows by using the chain rule
oL aJ
7= A 2
7= 2o o e ay (G >

Comparing the corresponding terms in Egs. (22) and (23), we can obtain design sensitivities for the objective function and
constraint with respect to the coefficients as

8% / W[g,(0)5(®)]dQ  and (%i: /D $,(0)3(®)dQ, (24)

wherei=1,2,...,Nis the number of CSRBF knots, ¢; is the expansion coefficient at ith knot. In numerical implementation, the
Delta function §(®) can be defined as follows:

1 ¢

"
In the above equation { is a constant usually chosen as 2-4 times of the mesh size.

In general, the level set function will evolve its shape, leading to a steep and/or flat level set function due to unwanted
numerical diffusion caused by the local approximation schemes [18,21]. Thus, a reinitialization scheme is usually built-in
to resurrect the behavior of the level set function in the neighborhood of the front while keeping the zero level set unchanged
so as to guarantee a good approximation of the normal or the curvature of the free boundary. But the error accumulation
from the reinitializations may appreciably move the front if the commonly used iterative procedure is used to retain a signed
distance function. Furthermore, it was reported that the periodically applied time-consuming reinitializations forbid the
nucleation of new holes inside the material domain. However, the present parameterization scheme is capable of ensuring
a globally smooth level set surface, as the underlying problem is evaluated over the entire level set function and the descend-
ing gradients is also obtained in the fixed extended design domain. Hence, it is unlikely to lead the level set function to losing
its surface compared to most local numerical approximation schemes.

In numerical implementation, the nonlinear elastic problem is computationally inexpensive as the tangential stiffness
matrix has already been factorized during the solution of the real displacement vector. Compared to the elastic problem,
the electrical and thermal problems can be solved with a fraction of time because the number of D.O.F. and the bandwidth

(25)
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are only half that of the elastic system. The method of moving asymptotes (MMA) [25] belonging to sequential convex pro-
gramming schemes is used to solve the optimization problem.

5. Numerical example

In numerical examples, the level set function is initially embedded as a signed distance function but no further reinitial-
izations are applied. CSRBF knots and FE nodes are two different sets of grids. However, the CSRBF knots in this paper are
supposed to coincide with the FE nodes to simplify the numerical procedure. The strain energy density field is approximated
using the popularly used simple “ersatz material” scheme [1], and the convergence difficulty in the geometrically nonlinear
analysis is solved using the simple scheme reported in [23,14].

5.1. Optimal design of thermally actuated compliant microactuator

At first, we only consider a thermally actuated compliant microactuator (Fig. 1) with a square shape of 400 pm x 400 pm
and a thickness of 10 pm, and the design domain is discretized with a mesh of 100 x 100 quadrilateral elements. The left, top
and bottom sides are fixed as Dirichlet boundaries and the right side is non-homogeneous Neumann boundary. It is noted
that the boundaries of the thermal and elastic subsystems are consistent. Twenty-five percent of the design domain is filled
with thermomechanical material with the Young’s modulus E = 161 GPa, the Poisson ratio v=0.31, the thermal expansion
coefficient o = 1.75 x 107> K~'. The artificial spring stiffness is K; = 650 N/m and the temperature change is 100 K. The sup-
port radius of the CSRBF is 3.5 times of the element length.

First, the shape and topology optimization problem is solved by considering a linear structure. The optimization con-
verges to a local optimum with a displacement output of 4.685 pm after 352 iterations. Figs. 2 and 3 show the evolving pro-
cess of the topology and the corresponding level set surface at different stages, respectively. Compared to the classical shape
optimization or the material distribution approaches, one of the characteristics of the present level set method is to handle
shape fidelity and topological changes simultaneously by retaining a smooth boundary, and also the level set surface has the
capacity of implementing complicated topology changes by creating holes, breaking apart or merging with other boundaries.
Fig. 4 displays the distribution of expansion coefficients of the parameterized size optimization problem. It can be seen that
the design variables gradually collect towards two extreme ends almost with a uniformly scatted minimum value and a
maximum value. Specifically, the design variables corresponding to the weak material converge to a minimal while the solid
material related to a maximal value, which is similar to the distribution of element densities in SIMP method [7]. In SIMP, the
regularized element densities serve as design variables to be updated with optimization algorithms, but in the present level
set method it is the expansion coefficients at knots that need to be updated with MMA method. However, it should be
pointed out that there is no guarantee that the present parameterization level set method can always lead to a global opti-
mum, due to the non-convexity of the original optimization problem.

Second, to explore the difference between linear modeling and nonlinear finite element modeling, the same optimization
problem is solved by considering geometrical nonlinearity. Our numerical experience shows that it is practically difficult to
find difference between linear and nonlinear modeling for smaller displacement outputs. For instance, the final design of the
structure in Fig. 1 is obtained after 361 iterations with a displacement output of 5.051 pm, and the design of corresponding
nonlinear structure is given in Fig. 5. It can be easily seen that the final topologies (Figs. 2(f) and 5(f)) for these two different
causes are similar. However, if a smaller spring stiffness K; = 65 N/m is mounted at the output port to enable a much larger
displacement output, we can find the final topology obtained with linear modeling (Fig. 6(a)) can get an output displacement
10.268 pm, while the nonlinear modeling leads to a topology (Fig. 6(b)) that is obvious different from the one achieved using
linear modeling and the output displacement 17.143 pum is also larger than that in linear structure. In addition, we can see
the actuator in Fig. 6(a) is with thicker hinges and bars, compared to the resulting topology in Fig. 6(b) with more thin hinges

K S
Design domain IJWVL-E

Fig. 1. Design domain of the thermally actuated actuator.
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Fig. 2. Linear: evolution of the topology corresponding to zero level set.

Fig. 3. Evolution of the higher-dimensional level set surface.

and bars which make it possible to bend and to generate large displacement outputs. Practically, it is time-consuming to test
all different microactuators with linear and geometrically nonlinear modeling, but this numerical case has proved that geo-
metrical nonlinearity is important in modeling compliant microactuators.

5.2. Optimal design of electro-thermally actuated compliant microactuator

This example (Fig. 7) concerns with the design of electrothermomechanical microactuators involving geometrical nonlin-
earity. The design domain is 240 um x 80 u m with 120 x 40 finite elements. The left and right edges of the design domain
have two terminals marked with blue ends, to which a prescribed voltage of 0.3 V is applied. An spring is attached at the
middle point of the top edge with a stiffness of Ks = 750 N/m. The artificial material properties are given as: Young’s modulus
E =169 GPa, Poisson ratio »=0.31, thermal expansion coefficient o = 2.0 x 107® K™, thermal conductivity ¢ = 150 W/(m K)
and electric conductivity g = 2.381 x 10*(Q m)~'. The allowable material usage is 22.5%. For simplicity, the convection is as-
sumed to happen only from the top surface and the equivalent convention coefficient is h = 18.7 x 10°W/(m? K) [23].

Fig. 8 shows the electrothermomechanically actuated multiphysics actuators obtained by considering geometrical non-
linearity. The final design with a well-recognized topology is obtained with a displacement output of 7.8945 um after
318 iterations with a conservative volume constraint. In the previous work [13] we have demonstrated that the parameter-
ization level set method can create new holes inside the design domain only filled with linear elastic material. The new holes
are initially generated near the boundary and then gradually migrate and spawn to the interior of the design domain. In this
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Fig. 4. Distribution of the interpolation coefficients (design variables).

Fig. 5. Nonlinear: evolution of the topology corresponding to zero level set.

Fig. 6. Final topologies for the linear (a) and nonlinear case (b).

example, both the velocity field and the design sensitivity are evaluated on the entire design domain. Furthermore, the peri-
odically applied reinitialization procedures originally used to recurrent the local behavior of the level set surface to avoid a
flat or a steep surface [18,21] are also eliminated. From the design process, we can find that the presented level set method
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Fig. 7. Design domain of the electro-thermally actuated microactuator.

Fig. 8. Evolution of the topology with 16 holes.

can implement shape fidelity and topological changes via eliminating and generating new holes freely inside the material
domain via a similar procedure. Thus, the numerical difficulties in the conventional level set methods such as the CFL con-
dition, the reinitializations and velocity extension algorithm can be reasonably avoided.

6. Conclusions

This paper proposed a level set method for shape and topology optimization of geometrically nonlinear multiphysics
actuators using level set methods and CSRBFs. Two widely studied examples have been used to demonstrate the effective-
ness of the proposed method.

Acknowledgments

This research was funded by the Australian Research Council (Grant No: DP0666683 and DP0774596); and the National
Science Foundation of China (Grant No: 10728205). The authors would like to show their thanks to Prof. Krister Svanberg for
providing MMA codes.

References

[1] G. Allaire, F. Jouve, A.M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics 194 (2004)
363-393.

[2] G.K. Ananthasuresh, Optimal synthesis methods for MEMS, Kluwer, Boston, 2003.

[3] KJ. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ, 1996.



Z. Luo et al./Journal of Computational Physics 228 (2009) 3173-3181 3181

[4] T. Belytschko, S.P. Xiao, C. Parimi, Topology optimization with implicit function and regularization, International Journal for Numerical Methods in
Engineering 57 (2003) 1177-1196.
[5] M.P. Bendsge, N. Kikuchi, Generating optimal topology in structural design using a homogenization method, Computer Methods in Applied Mechanics
and Engineering 71 (1988) 197-224.
[6] M.P. Bendsge, O. Sigmund, Material interpolation schemes in topology optimization, Archive of Applied Mechanics 69 (1999) 635-654.
[7] M.P. Bendsge, O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Springer, Berlin, Heidelberg, 2003.
[8] T.E. Bruns, D.A. Tortorelli, Topology optimization of nonlinear elastic structures and compliant mechanisms, Computer Methods in Applied Mechanics
and Engineering 190 (2001) 3443-3459.
[9] M.D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12,
Cambridge University Press, New York, 2004.
[10] M. Burger, B. Hackl, W. Ring, Incorporating topological derivatives into level set methods, Journal of Computational Physics 194 (2004) 344-362.
[11] E. Haber, A multilevel level-set method for optimizing eigenvalues in shape design problems, Journal of Computational Physics 198 (2004) 518-534.
[12] L.L. Howell, Compliant Mechanisms, John Wiley & Sons Inc., New York, 2001.
[13] Z. Luo, LY. Tong, M.Y. Wang, S.Y. Wang, Shape and topology optimization of compliant mechanisms using a parameterization level set method, Journal
of Computational Physics 227 (2007) 680-705.
[14] Z. Luo, LY. Tong, A level set method for shape and topology optimization of large-displacement compliant mechanisms, International Journal for
Numerical Methods in Engineering 76 (2008) 862-892.
[15] Z. Luo, LY. Tong, J.Z. Luo, P. Wei, M.Y. Wang, Design of piezoelectric actuators using a multiphase level set method of piecewise constants, Journal of
Computational Physics 228 (2009) 2643-2659.
[16] S. Osher, J.A. Sethian, Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of
Computational Physics 79 (1988) 12-49.
[17] S. Osher, F. Santosa, Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous
drum, Journal of Computational Physics 171 (2001) 272-288.
[18] S. Osher, R.P. Fedkiw, Level set methods and dynamic implicit surface, Springer-Verlag, New York, 2002.
[19] C.B.W. Pedersen, T. Buhl, O. Sigmund, Topology synthesis of large-displacement compliant mechanisms, International Journal for Numerical Methods
in Engineering 50 (2001) 2683-2705.
[20] R. Schaback, H. Wendland, Using compactly supported radial basis functions to solve partial differential equations, in: C.S. Chen, C.A. Brebbia, D.W.
Pepper (Eds.), Boundary Element Technology XIII, WitPress, Southampton, Boston, 1999, pp. 311-324.
[21] J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Version and
Material Science, Cambridge Monograph on Applied and Computational Mathematics, Cambridge University Press, UK, 1999.
[22] J.A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods, Journal of Computational Physics 163 (2000)
489-528.
[23] O. Sigmund, Design of multiphysics actuator using topology optimization - Part I: One material structure, Computer Methods in Applied Mechanics
and Engineering 190 (2001) 6577-6604.
[24] ]. Sokolowski, ].P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer, Berlin, 1992.
[25] K. Svanberg, The method of moving asymptotes: a new method for structural optimization, International Journal for Numerical Methods in
Engineering 24 (1987) 359-373.
[26] M.Y. Wang, X.M. Wang, D.M. Guo, A level set method for structural topology optimization, Computer Methods in Applied Mechanics and Engineering
192 (2003) 227-246.
[27] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational
Mathematics 4 (1995) 389-396.
[28] Y.M. Xie, G.P. Steven, A simple evolution procedure for structural optimization, Computers and Structures 49 (1993) 885-896.
[29] L.Z. Yin, G.K. Ananthasuresh, A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant
micromechanisms, Sensors and Actuators 97-98 (2002) 599-609.
[30] G.H. Yoon, Y.Y. Kim, The element connectivity parameterization formulation for the topology design optimization of multiphysics systems,
International Journal for Numerical Methods in Engineering 64 (2005) 1649-1677.
[31] M. Zhou, G.LN. Rozvany, The COC algorithm, Part II: Topological, geometry and generalized shape optimization, Computer Methods in Applied
Mechanics and Engineering 89 (1991) 197-224.



	Shape and topology optimization for electrothermomechanical microactuators using level set methods
	Introduction
	Level set based parameterization scheme
	Design optimization of multiphysics actuators
	Design sensitivity analysis using shape derivative
	Numerical example
	Optimal design of thermally actuated compliant microactuator
	Optimal design of electro-thermally actuated compliant microactuator

	Conclusions
	Acknowledgments
	References


